Sunday, 21 December 2014

PPI and gPPI

PPI and gPPI

A PPI analysis starts with an ROI and a design matrix. It's a way of searching among all other voxels in the brain (outside the seed ROI) for regions that are highly connected to that seed. One of the most straightforward ways of doing connectivity analyses would be to start with one ROI and simply measure the correlation of all other voxels in the brain to that voxel's timeseries, looking for high correlation values. As Friston and other pointed out a while ago, though, it's not quite as interesting if the correlation between two regions is totally static across the experiment - or if it's driven by the fact that they're both totally non-active during rest conditions, say. What might be more interesting is if the connection strength between a voxel and your seed ROI varied with the experiment - i.e., there was a much tighter connection during condition A between these regions than there was during condition B. That may tell you something about how connectivity influences your actual task (and vice versa).
PPIs are relatively simple to perform; you extract the timeseries from a seed voxel or ROI/VOI and convolve it with a vector representing a contrast in your design matrix (say, A vs. B). You then put this new PPI regressor into a general linear model analysis, along with the timeseries itself and the vector representing your contrast; you'll use those to soak up the variance from the main effects, which you'll ignore in favor of the PPI interaction term. When you estimate the parameters of this new GLM, the voxels where the PPI regressor has a very high parameter are those who showed a signficant change in connectivity with your experimental manipulation.
PPIs are good to do if you have one ROI of interest and want to see what's connected with it. They're tricky to interpret, and they can take a really long time to re-estimate if you have several ROIs to explore and many subjects.


Jung D, Sul S and Kim H (2013) Dissociable neural processes underlying risky decisions for self versus other. Front. Neurosci. 7:15. doi: 10.3389/fnins.2013.00015

http://mindhive.mit.edu/book/export/html/58
 

No comments:

Post a Comment